
Multiresolution Splatting for Indirect Illumination

Greg Nichols∗

University of Iowa

Chris Wyman†

University of Iowa

Figure 1: Direct light only (left); indirect light generated with our method (center); the combined image (right). This scene is generated at
29 fps with fully dynamic lighting, geometry, and camera.

Abstract

Global illumination provides a visual richness not achievable with
the direct illumination models used by most interactive applica-
tions. To generate global effects, numerous approximations attempt
to reduce global illumination costs to levels feasible in interactive
contexts. One such approximation, reflective shadow maps, sam-
ples a shadow map to identify secondary light sources whose con-
tributions are splatted into eye-space. This splatting introduces sig-
nificant overdraw that is usually reduced by artificially shrinking
each splat’s radius of influence. This paper introduces a new, multi-
resolution approach for interactively splatting indirect illumination.
Instead of reducing GPU fill rate by reducing splat size, we reduce
fill rate by rendering splats into a multi-resolution buffer. This takes
advantage of the low-frequency nature of diffuse and glossy indi-
rect lighting, allowing rendering of indirect contributions at low res-
olution where lighting changes slowly and at high resolution near
discontinuities. Because this multi-resolution rendering occurs on
a per-splat basis, we can significantly reduce fill rate without arbi-
trarily clipping splat contributions below a given threshold—those
regions simply are rendered at a coarse resolution.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
I.3.3 [Computer Graphics]: Hardware Architecture—Graphics Pro-
cessors

Keywords: global illumination, interactive rendering, hardware-
assisted rendering

∗e-mail: gbnichol@cs.uiowa.edu
†e-mail: cwyman@cs.uiowa.edu

1 Introduction

Indirect illumination represents light reaching a surface after pre-
viously interacting with other surfaces. While this lighting adds
tremendously to visual richness and scene realism, the costs to track
multi-bounce light reflections often prove prohibitive. Due to this
expense, interactive applications frequently forgo complex global
illumination entirely or use approximate techniques such as am-
bient occlusion [Zhukov et al. 1998], light maps, or precomputed
radiance transport [Sloan et al. 2002]. Unfortunately these tech-
niques impose limits of their own, often ignoring color bleeding or
restricting the motion of geometry, lights, or viewer.

However, physically accurate global illumination may be unnec-
essary in most contexts. Tabellion and Lamorlette [2004] found
that even in visually demanding applications, such as feature films,
single bounce indirect illumination provides plausible lighting. Ac-
cepting this avoids tracing arbitrarily complex light paths that add
little to a scene and dramatically simplifies the rendering equation.

One single bounce approach uses an augmented shadow map,
called a reflective shadow map (RSM), to either gather during a
final deferred render pass [Dachsbacher and Stamminger 2005] or
scatter indirect illumination via splatting [Dachsbacher and Stam-
minger 2006]. Both techniques build on the idea of instant radios-
ity [Keller 1997], where pixels in the shadow map represent virtual
point lights (VPLs) used as secondary light sources for computing
indirect lighting. This approach effectively reformulates the render-
ing equation from a complex integral over surfaces to a sum over all
texels in the shadow map. The key to achieving performance then
lies in reducing the costs of this summation.

This paper proposes a novel multiresolution splatting technique that
reduces costs for RSM-based indirect illumination. Previous tech-
niques either gathered light from a subset of the virtual point lights
or splatted light into limited regions. Our approach instead rec-
ognizes that each virtual light potentially affects the whole scene,
but due to the low-frequency nature of indirect illumination many
pixels receive radiance quite similar to their neighbors and can be
processed as a group. This idea is similar to hierarchical radios-
ity approaches [Hanrahan et al. 1991], but instead works in image-
space. Once per frame, the image is divided into subsplats at mul-
tiple resolutions, which are then splatted for each VPL. The results

are additively blended, and a new interpolation technique removes
discretization artifacts from the final indirect illumination.

2 Previous Work

Widespread illumination research has enabled numerous techniques
for interactive complex lighting. Generally, the simplest approaches
add global effects by precomputing lighting, for instance using ra-
diosity [Cohen and Wallace 1993], and baking in the results to sur-
face textures. Clearly this precludes dynamic lighting and signif-
icant scene modifications, but quality depends on precomputation
time and runtime evaluation is cheap.

Ambient occlusion [Zhukov et al. 1998] approximates indirect il-
lumination by darkening direct lighting based upon occlusion from
neighboring geometry. Although this produces only a coarse ap-
proximation, it cheaply reproduces effects such as darkened cor-
ners that arise from indirect lighting. Precomputed ambient occlu-
sion provides a cheaper alternative to complex radiosity solutions,
but maintains the assumption of static geometry. Bunnell [2005]
describes an iterative ambient occlusion approximation for simple
dynamic models. Other techniques [Kontkanen and Laine 2005;
Malmer et al. 2007] precompute occlusion “fields” for rigid objects,
allowing these objects to move while occluding nearby geometry.

Another class of techniques precomputes light transport and com-
bines it with dynamic illumination at runtime using a simple dot
product. Using a spherical harmonic basis to store the precomputed
transport, Sloan et al. [2002] allow rendering of low-frequency
lighting on static geometry. This works best with environmental
lighting, though further work [Kristensen et al. 2005] also allows
local lights. Transport fields [Zhou et al. 2005; Iwasaki et al. 2007]
extend this approach to allow scenes with a few rigid, dynamic ob-
jects. Related techniques [Kautz et al. 2004; Ren et al. 2006] allow
simple deformable models, but without indirect illumination.

Instant radiosity [Keller 1997] introduces the concept of point
lights, which are emitted from scene illuminants using a quasi-
random walk. Multiple hardware rendering passes use each VPL in
turn as a point light, accumulating lighting and using shadow maps
to account for indirect visibility. This technique directly demon-
strates the cost of visibility queries in global illumination—each
object is rasterized once for each virtual light. Laine et al. [2007]
reduce visibility costs for instant radiosity by reusing shadow maps
between some VPLs and Ritschel et al. [2007] precompute coher-
ent shadow maps, allowing for faster visibility queries on rigid ob-
jects. Dachsbacher et al. [2007] and Dong et al. [2007] explore
techniques that avoid explicitly computing visibility, instead rely-
ing on implicit visibility computations.

2.1 Reflective Shadow Maps

Rather than computing or approximating visibility, reflective
shadow maps [Dachsbacher and Stamminger 2005] entirely ignore
visibility for indirect rays, assuming that viewers will not notice
incorrect visibility for secondary illumination. Reflective shadow
maps build on the idea of instant radiosity, using shadow mapping
hardware to generate virtual lights directly instead of using quasi-
random path tracing. The map itself consists of a standard shadow
map augmented by additional buffers to store surface normals, po-
sitions, and reflected flux (see Figure 2)—essentially a light-space
G-buffer [Saito and Takahashi 1990].

The original method [Dachsbacher and Stamminger 2005] uses
a gathering approach to sample nearby locations in the reflective
shadow map for each pixel in the final image; eye-space interpola-
tion is used to help reduce illumination artifacts. Later work refor-

Figure 2: Components of a reflective shadow map (left to right):
a linear distance from the eye, a world space fragment position, a
surface normal, and a reflected flux.

mulates this as a shooting algorithm [Dachsbacher and Stamminger
2006], splatting contributions from each VPL onto a nearby region
in eye-space. This technique extends to render glossy materials and
simple caustics by elongating the splat size based upon the mate-
rial’s BRDF, and importance sampling the shadow map allows se-
lection of a good set of virtual lights based upon flux distribution.

One of the problems with splatting illumination from VPLs is ex-
cessive overdraw. In theory, each VPL can affect final illumination
everywhere in the scene; using 1000 point lights requires comput-
ing contributions for 1000 splats at each eye-space pixel. Dachs-
bacher and Stamminger [2006] reduce overdraw by restricting splat
sizes. Beyond a certain distance from each VPL, indirect contribu-
tions are ignored. This gives an ideal parameter for tuning perfor-
mance, but darkens illumination significantly as splat sizes shrink.

2.2 Splatting and Multiresolution Approaches

Interactive techniques often rely on splatting, as gathering fre-
quently proves less amenable to GPU acceleration. In the context of
global illumination, Gautron et al. [2005] propose a splat-based ren-
derer computing illumination with a radiance cache. Shanmugam
and Arikan [2007] use billboards as splats to compute ambient oc-
clusion on surfaces within the splat’s influence. Sloan et al. [2007]
use splats to accumulate indirect illumination from spherical proxy
geometry. And caustic mapping [Shah et al. 2007] frequently uses
splats to represent photon energy, varying splat size to account for
divergent photons and reduce sampling noise [Wyman and Dachs-
bacher 2008].

Even offline illumination rendering has investigated splatting as an
alternative to gathering techniques, allowing more accurate illumi-
nation on high-frequency geometry and removal of low-frequency
noise [Herzog et al. 2007].

However, most interactive splat-based illumination algorithms sim-
ply assume splats must be rendered at full resolution, or clamp
splats to a “reasonable” size to maintain performance. Point-
based rendering [Rusinkiewicz and Levoy 2000] and volume ren-
dering [Laur and Hanrahan 1991] use multi-resolution splatting to
achieve interactive speeds, and offline rendering techniques fre-
quently use multi-resolution and hierarchical techniques to reduce
computational costs (e.g., hierarchical radiosity [Hanrahan et al.
1991]). We draw inspiration from recent caustic work [Wyman
2008] that renders illumination from splats into a multi-resolution
image. This allows capturing illumination from very large splats
into coarse buffers and fine illumination details in high resolution
buffers while maintaining small splat sizes that dramatically reduce
the overhead introduced by overdraw.

2.3 Min-Max Mipmaps

Our technique makes use of the min-max mipmap, which is similar
to a subdivided quad-tree [Samet 1990]. Recent uses of min-max
mipmaps include the rendering of soft shadows [Guennebaud et al.
2006], geometry intersection [Carr et al. 2006], and dynamic height
field rendering [Tevs et al. 2008].

3 Algorithm

Similar to Dachsbacher and Stamminger [2006], we splat illumina-
tion from each virtual point light onto the scene. We observe that in-
direct lighting from a point light generally falls off quite smoothly,
so splatting into a coarse buffer should suffice. Because splats are
rendered in eye-space, however, depth discontinuities and sharp
normal variations introduce high-frequency illumination changes
ignored when splatting into a coarse buffer.

Instead of rendering a splat for each VPL into a single resolution
buffer, we render these splats to a multi-resolution buffer. We start
by splatting into a 162 buffer, allowing every VPL to affect illu-
mination in all parts of the final rendering. In regions where this
sampling appears too coarse, we subdivide the splat into subsplats,
with some subsplats rendered in the 162 buffer, and some refined
and output to a 322 or 642 buffer, and some refined all the way to
the final output resolution.

This idea has roots in various previous techniques. It could be seen
as a variant of hierarchical radiosity [Hanrahan et al. 1991], where
patches are chosen based upon image-space rather than object-
space constraints. Radiance caching [Gautron et al. 2005] typically
focuses illumination samples near edges, and Tole et al. [Tole et al.
2002] rely on image-space criteria to better select cache samples
for an interactive render. Ultimately, our algorithm simply allows
splatting-based techniques to reduce fillrate costs by avoiding re-
dundant computations, grouping them, and rendering to the coars-
est buffer allowable for each group. In our algorithm each subsplat
covers a single texel, though that texel might lie in a 162 or 642

buffer and thus affect hundreds of pixels in the final image.

The rest of this section describes, in greater detail, the steps of our
algorithm. A quick breakdown follows:

1. Compute reflective shadow map and direct lighting,

2. Select VPLs used to splat indirect illumination,

3. Generate mipmap for use in detecting discontinuities,

4. Create and iteratively refine the list of subsplats,

5. Render subsplats to multi-resolution illumination buffer,

6. Upscale and combine buffer layers for total indirect light,

7. Add direct and indirect light for final result.

Steps 1 and 2 are described in Section 3.1, steps 3 through 5 are de-
scribed in Sections 3.2 through 3.4, and steps 6 and 7 are described
in Section 3.5.

3.1 Reflective Shadow Map and VPLs

We begin by generating a reflective shadow map [Dachsbacher and
Stamminger 2006] by rendering from the light, storing world-space
position, distance from the light, surface normal, and reflected flux
for each texel (e.g., Figure 2). Next, we render from the eye, using
only direct light with shadow mapping. During this step, we gener-
ate a G-buffer [Saito and Takahashi 1990] containing data needed
for deferred shading (i.e., world-space position, normal, and dis-
tance from the eye).

We then sample the reflective shadow map to select points to use
as VPLs for indirect illumination. We select VPLs by uniformly

sampling the reflective shadow map on a regular grid, though a
flux-based importance sampling or quasi-random sampling may ul-
timately give better quality.

3.2 Min-Max Mipmap Creation

To correctly refine subsplats, we need to identify image-space dis-
continuities. To do this we use a min-max mipmap, where each
element stores maximum and minimum values rather than the aver-
age depths in a standard mipmap. To compute a min-max mipmap
for depth, we start from the full-resolution linear depth buffer (com-
puted in Section 3.1) and run the mipmap generation process. We
halve the resolution at each step, computing for each output ele-
ment the maximum and minimum values of the four input elements.
When completed, sampling a texel within the min-max mipmap
gives us the minimum and maximum depth values in that texel’s
image-space area, allowing efficient detection of depth discontinu-
ities. If the difference between these values is greater than a thresh-
old, then a depth discontinuity exists within that texel (although this
method can detect spurious discontinuities in surfaces viewed at a
steep angle).

Detecting normal discontinuities using a min-max mipmap is less
straightforward. We generate three sets of min-max mipmaps, one
for each component of the unit surface normal. If the difference
between the max and min values of any of the normal coordinates
exceeds a threshold, we consider it a normal discontinuity. In prac-
tice this method works well for detecting sharp surface features.

3.3 Processing and Refining the List of Splats

To generate the list of sub-splats, we create a single full-screen splat
at the coarsest level in our illumination buffer, the multi-resolution
image used to accumulate our indirect illumination. This splat is
split into one subsplat for every texel in this coarse resolution. In
our implementation, which uses a 162 buffer for the coarsest reso-
lution, we therefore start with 64 subsplats.

Each subsplat can either be rendered as a point into the coarse res-
olution or refined into four new subsplats corresponding to the next
layer in the illumination buffer. Since these subdivided subsplats
each represent a pixel in a higher resolution layer, each refinement
quadruples the required fillrate. Thus, the key is determining when
to refine subsplats and when a coarser one suffices.

3.3.1 Refinement

In general indirect illumination changes slowly, based upon a
distance-squared falloff from the light and cosine falloffs dependent
on surface patch orientation. In simple scenes, relatively coarse
sampling and bilinear interpolation gives plausible lighting. How-
ever, complex models create depth discontinuities along silhou-
ettes and normal discontinuities along creases that introduce rapid
changes to the indirect illumination seen by a viewer.

We detect these discontinuities by sampling the min-max mipmaps.
Sampling these mipmaps at the subsplat’s resolution allows us to
detect significant depth or normal variations within the subsplat.
If the difference between the max and min depth values exceeds a
threshold, or the difference in any of the normal components ex-
ceed a similar threshold, the subsplat is refined into four higher-
resolution subsplats (see Figure 4). Refinement occurs iteratively
until the subsplat contains no discontinuities or we reach the maxi-
mal refinement level. A separate list of subsplats can be refined for
each VPL, or a single list can be refined and used for all VPLs.

32x32 64x64

128x128 256x256 nearest neighbor upsampling upsampling with naive bilinear interpolation

32x32 64x64

128x128 256x256 nearest neighbor upsampling upsampling with naive bilinear interpolation

Figure 3: Each illumination buffer level contains pieces of the final indirect illumination at a different resolution. On the right: artifacts from
combining the illumination buffers using nearest neighbor upsampling and naive bilinear interpolation.

Eye View 16 Coarse Subsplats

2 Coarse, and 56

Finer Subsplats

2 Coarse, 19 Finer, and

148 Finest Subsplats

Figure 4: Subsplat refinement occurs in areas with depth or normal
discontinuities. In this case, we demonstrate how a splat from a
single virtual light might be refined twice.

3.4 Rendering Indirect Illumination

After iteratively refining, we have a large list of subsplats. Our im-
plementation requires a three-tuple to store each subsplat, with one
value specifying the subsplat’s output resolution, and two values
specifying its screen-space location.

During rendering, a vertex shader positions each subsplat in the cor-
rect layer of the illumination buffer, a fragment shader computes
indirect illumination for each subsplat, and additive blending accu-
mulates all the contributions. For each subsplat, our indirect illumi-

nation is computed as:

I(xs, xl) = ρlρsΦl

max{ ~Vls · ~Nl, 0}max{ ~Vsl · ~Ns, 0}

| ~Vls|2
, (1)

where xs and xl are the shaded point and the virtual light point, ~Ns

and ~Nl are the surface normals at xs and xl, Φl is the flux to the
VPL at xl, ρs and ρl are the BRDFs at xs and xl, and ~Vls and ~Vsl

are respectively the vectors from xl to xs and from xs to xl. These
values are retrieved from the appropriate location either in the RSM
or the G-buffer.

After rendering all subsplats, the illumination buffer contains the
total indirect illumination split into disjoint components at vari-
ous resolutions. Naively summing the layer contributions gives a
blocky representation of total indirect light (see Figure 3) that re-
quires interpolating before use.

3.5 Upsampling and Combination

Figure 3 demonstrates the artifacts from naive methods of combin-
ing multiresolution illumination: blocky illumination when using
nearest neighbor upsampling, and strange multiresolution haloing
and ringing when using bilinear interpolation. Clearly, neither is
acceptable.

The problem lies in the complex structure of the illumination buffer.
Each texel contains either all of the illumination for that eye-space
location, or none at all. Linear interpolation between a texel con-
taining all of its relevant light and one containing no illumination
makes little sense, as it spreads energy from texels containing en-
ergy to those deemed too coarse or too fine. Given that roles may
be reversed at other levels in the illumination buffer, multiresolu-
tion linear interpolation leads to ringing and haloing. Essentially,
this arises from the varying regions of support for the interpolation
filter at multiple scales.

To deal with this, we utilize a unique upsampling scheme. Up-
scaling progresses from coarsest to finest layers in the illumination
buffer. At each resolution, every texel that contains illumination
information is linearly interpolated with neighboring texels of the
same resolution, whether they were originally rendered at that res-
olution or upsampled from a lower resolution. To avoid the halo-
ing and ringing shown in Figure 3, each upsampling pass only out-
puts interpolated texels in locations where the illumination buffer

(additional upsampling passes)

combine,
upsample, and

interpolate

=+

32x32 illumination bu!er samples 16x16 result samples (at 32x32) 32x32 result samples (at 64x64)

32x32 result samples (at 64x64)64x64 illumination bu!er samples 64x64 result samples (at 128x128)

"nal upsampled resultuninterpolated result

32x32 illumination bu!er samples 16x16 result samples (at 32x32) 32x32 result samples (at 64x64)

32x32 result samples (at 64x64)64x64 illumination bu!er samples 64x64 result samples (at 128x128)

"nal upsampled resultuninterpolated result

combine,
upsample, and

interpolate

=+

Figure 5: Two upsampling passes, from 322 to 642 to 1282. At each level, missing samples are combined with interpolated data from previous
levels. The result is interpolated to higher resolution, and used as the input for the next upsampling pass. Lower left: the non-interpolated
combination, and the final interpolated result.

Figure 6: Indirect lighting from a Buddha with a Phong BRDF;
here, subsplats are refined separately for each VPL. To emphasize
the contribution, a blue tint was added to indirect light reflected by
the Buddha. (Left to right): direct lighting, indirect lighting, and
combined result. Indirect illumination rendered at 2562 at 23 fps.

already contained data for that resolution: energy is never pulled
from empty areas nor spread into them, and all texels that contained
no energy at the start of each pass remain empty. Figure 5 demon-
strates this process graphically through two upsampling steps.

After processing all the layers, we have a single combined and
upsampled image that varies smoothly, without ringing artifacts.
Furthermore, this method does not spread energy across major dis-
continuities. Our refinement process ensures that areas with these
discontinuities are refined into high resolution subsplats. Because
each texel is interpolated only with texels of equal resolution and
those upsampled from coarser resolutions, energy stays on the cor-
rect side of a discontinuity.

4 Implementation

We implemented our method using OpenGL and GLSL on a ma-
chine with a dual-core 3GHz Pentium 4 and a GeForce GTX 280.
Our implementation uses OpenGL’s geometry shader and transform
feedback extensions. All images and results in this paper were gen-
erated using a final output resolution of 20482, which was down-
sampled to a 10242 window for an antialiased rendering.

4.1 VPLs and Subsplat Refinement

Our initial implementation refined a separate list of subsplats for
each VPL, using discontinuities in computed illumination to guide
the refinement process. This enabled the use of our technique with
arbitrary BRDFs (such as the Phong material shown in Figure 6),
where sharper highlights arising from material properties may re-
quire additional refinement in areas that cannot be determined from
normal or depth discontinuities alone.

With this approach, generating and refining a list of subsplats for
each VPL is the most expensive part of our method, often outpacing
subsplat rendering by a factor of 3 or more. The two major sources
of this expense are the high bandwidth requirements for processing
large number of subsplats, and the high cost of the geometry shader
that does the splitting. In addition to sampling for normal and depth
discontinuities, this shader must compute indirect illumination at
multiple points when determining whether to split a subsplat.

For diffuse scenes we found that splats were being split almost iden-
tically for each VPL. Noting this, we implemented an alternate ap-
proach that performs splat refinement just once per frame, refining
solely based on normal and depth discontinuities. All VPLs then
reuse the same subsplats for rendering. In diffuse scenes, this ap-
proach yields a significant increase in performance while maintain-
ing similar image quality. Unless otherwise stated, all images and
results in this paper are generated using this second approach.

Figure 7: The Buddha model rendered at 10242. The left image,
rendered with a normal splitting threshold of 0.25, runs at 8 fps;
the two images on the right use a threshold of 1.4 and run at 32 fps.
The rightmost image approximates surface detail with the technique
described in Section 4.2, using α = 0.5.

4.2 Adding Surface Detail

Given that a large number of subsplats must be rendered for each
VPL, the number of subsplats generated has a significant impact
on the performance of our technique. Since this number is heav-
ily influenced by thresholds within the refinement process, these
thresholds can serve as a parameter for turning performance. This
is particularly true of the threshold used to detect normal disconti-
nuities, which ranges from [0..2]: in the flying bunny scene, with
an indirect resolution of 10242, we found that tweaking this param-
eter alone resulted in framerates anywhere between 5 and 35 fps.
A higher threshold allows faster framerates, at the expense of fine
surface details. This can be seen in Figure 7: with high normal
thresholds, some surface features of the Buddha are not significant
enough to trigger refinement. These areas are then rendered at low
resolution, effectively blurring them out.

One solution is to approximate the missing detail, modulating the
indirect illumination using the surface normal’s alignment towards
the camera. For each image-space pixel of indirect illumination c,

with view vector ~V and surface normal ~N at the same location, and
a parameter α (ranging from [0..1]) controlling the intensity of the
modulation effect:

cout = c ∗ (α ∗ max{~V · ~N, 0} + (1 − α)) (2)

This reintroduces surface details to the indirect illumination in a vi-
sually plausible manner, allowing the use of higher normal thresh-
olds; this in turn reduces the number of splats and improves fram-
erates. This approximation may cause some areas to appear overly
dark, which may be objectionable in some circumstances. The third
panel of Figure 7 illustrates the effect of replacing surface detail us-
ing this method.

5 Results and Discussion

Like other splatting approaches for indirect illumination, the per-
formance bottleneck in our technique is the cost of rendering the
indirect subsplats. The resolution of each subsplat does not matter:
in our multiresolution approach each subsplat covers just a single
texel, so the cost of rendering each subsplat is independent of reso-
lution. This also allows us to render subsplats as points, rather than
triangle meshes, quads, or point sprites. We achieved a 5% speed
increase simply by switching from quads to points.

Indirect
Resolu-
tion

Simple
Teapot
(6.3K
triangles)

Spinning
Buddha
(250K
triangles)

Dragon
& Bunny
(405K
triangles)

Flying
Bunnies
(417K
triangles)

1282 68 fps 60 fps 59 fps 52 fps

2562 50 fps 42 fps 42 fps 41 fps

5122 33 fps 30 fps 28 fps 31 fps

10242 22 fps 24 fps 21 fps 25 fps

Table 1: Framerates at various resolutions of indirect illumination.

162

322

642

1282

2562

5122

10242

Framerates for Various Numbers of VPLs

N
u

m
b

er
 o

f
Fr

a
m

es
 P

er
 S

ec
o

n
d

 (
fp

s)

Number of VPLs

102 202 302 402 602502

20

40

60

80

100

120

Figure 8: Framerates of our method in the dragon scene using
increasing numbers of VPLs, at various resolutions.

As demonstrated by the data in Table 1, our performance has little
dependency on geometric scene complexity: when rendering in-
direct illumination at 10242, performance is similar whether the
scene contains a single teapot or many complex models. Geome-
try is rasterized twice, one rendering from the light and one from
the eye. Only at fairly low resolutions does the geometric com-
plexity of a scene have a significant effect on performance. How-
ever, our method is sensitive to the visual complexity of a scene.
When looking at a flat wall, few subsplat refinements are required;
complex geometry requires refinement around edges, creases, and
crevices; and high frequency random geometry may require a uni-
formly dense refinement, where a naive splatting technique would
outpeform our multiresolution approach.

As with other splatting techniques, we ignore visibility considera-
tions when accumulating indirect illumination, which can result in
an overly bright image. VPLs on a scene’s ceiling illuminate not
only the surface of a table, but also the floor below the table. One
approach might approximation visibility independently, e.g., using
ambient occlusion, and modulate the results. In the future, we hope
to explore multiresolution techniques that account for visibility.

Figure 1 demonstrates the dragon and bunny scene rendered with
direct illumination only, and with indirect illumination subdivided
to a maximum refinement of 5122. Figure 9 demonstrates several
different configurations of indirect illumination, rendered with a

7 fps

22 fps

22 fps

9 fps

25 fps

25 fps 24 fps

24 fps

8 fps7 fps

22 fps

22 fps

9 fps

25 fps

25 fps 24 fps

24 fps

8 fps

Figure 9: Example scenes using our technique, with indirect illumination rendered at 10242. Top row: direct illumination only. Second row:
indirect illumination generated with normal threshold 0.2. Third row: using normal threshold 1.5. Fourth row: using normal threshold 1.5,
and replacing surface detail using the method described in Section 4.2 (with α = 0.5).

maximum refinement level of 10242. The second row is rendered
with a low normal threshold, and the third and fourth rows with a
high threshold. The fourth row illustrates the effects of reintroduc-
ing detail using the method described in Section 4.2.

Figure 8 explores performance on the dragon scene, showing vari-
ations due to the number of VPLs and refinement passes. With no
refinement, indirect illumination is rendered at 162 resolution. Each
refinement doubles the illumination resolution (up to 10242 after 6
passes). In our scenes 162 to 302 VPLs gave smooth results un-
der animation, without popping artifacts. We regularly sample the
reflective shadow maps to choose our virtual lights; a more sophis-
ticated VPL sampling scheme may reduce the number required.

6 Conclusion

This paper introduced a novel multiresolution splatting technique,
and described its application to the rendering of indirect illumina-
tion with a reflective shadow map. Our method reduces the cost of
rendering indirect illumination by rendering each piece of it at the
lowest possible resolution. This allows indirect illumination to be
rendered at high resolutions at interactive rates, without artificially
restricting each VPL’s ability to contribute to the entire scene.

Several interesting avenues of future work exist. The fact that each
subsplat is rendered and refined separately allows interesting pos-
sibilities: each subsplat could be rendered with only the appropri-
ate set of VPLs, for example, reducing the total number of sub-
splats that needed to be rendered and thereby increasing perfor-
mance. Additionally, our method might benefit from more intel-
ligent traversal metrics that would offer finer control over subsplat
refinement, perhaps detecting convergence rather than simply it-
erating a set number of times. Finally, we believe that our basic
multiresolution splatting approach is applicable to any number of
additional rendering problems, such as caustics or shadows, that do
not require all areas of an image to be rendered at high resolution.

References

BUNNELL, M. 2005. GPU Gems 2. Addison-Wesley, ch. Dynamic
Ambient Occlusion and Indirect Lighting, 223–233.

CARR, N. A., HOBEROCK, J., CRANE, K., AND HART, J. C.
2006. Fast gpu ray tracing of dynamic meshes using geometry
images. In Proceedings of Graphics Interface, 203–209.

COHEN, M. F., AND WALLACE, J. R. 1993. Radiosity and Real-
istic Image Synthesis. Academic Press Professional.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proceedings of the Symposium on Interactive
3D Graphics and Games, 203–231.

DACHSBACHER, C., AND STAMMINGER, M. 2006. Splatting in-
direct illumination. In Proceedings of the Symposium on Inter-
active 3D Graphics and Games, 93–100.

DACHSBACHER, C., STAMMINGER, M., DRETTAKIS, G., AND
DURAND, F. 2007. Implicit visibility and antiradiance for inter-
active global illumination. ACM Transactions on Graphics 26,
3, 61.

DONG, Z., KAUTZ, J., THEOBALT, C., AND SEIDEL, H.-P. 2007.
Interactive global illumination using implicit visibility. In Pro-
ceedings of Pacific Graphics, 77–86.

GAUTRON, P., KŘIVÁNEK, J., BOUATOUCH, K., AND PAT-
TANAIK, S. N. 2005. Radiance cache splatting: A GPU-friendly
global illumination algorithm. In Proceedings of the Eurograph-
ics Symposium on Rendering, 55–64.

GUENNEBAUD, G., BARTHE, L., AND PAULIN, M. 2006. Real-
time soft shadow mapping by backprojection. In Eurographics
Symposium on Rendering (EGSR), 227–234.

HANRAHAN, P., SALZMAN, D., AND AUPPERLE, L. 1991. A
rapid hierarchical radiosity algorithm. In Proceedings of SIG-
GRAPH, 197–206.

HERZOG, R., HAVRAN, V., KINUWAKI, S., MYSZKOWSKI, K.,
AND SEIDEL, H.-P. 2007. Global illumination using photon ray
splatting. Computer Graphics Forum 26, 3, 503–513.

IWASAKI, K., DOBASHI, Y., YOSHIMOTO, F., AND NISHITA, T.
2007. Precomputed radiance transfer for dynamic scenes taking
into account light interreflection. In Proceedings of the Euro-
graphics Symposium on Rendering, 35–44.

KAUTZ, J., LEHTINEN, J., AND AILA, T. 2004. Hemispherical
rasterization for self-shadowing of dynamic objects. In Proceed-
ings of the Eurographics Symposium on Rendering, 179–184.

KELLER, A. 1997. Instant radiosity. In Proceedings of SIG-
GRAPH, 49–56.

KONTKANEN, J., AND LAINE, S. 2005. Ambient occlusion fields.
In Proceedings of the Symposium on Interactive 3D Graphics
and Games, 41–48.

KRISTENSEN, A. W., AKENINE-MÖLLER, T., AND JENSEN,
H. W. 2005. Precomputed local radiance transfer for real-time
lighting design. ACM Transactions on Graphics 24, 3, 1208–
1215.

LAINE, S., SARANSAARI, H., KONTKANEN, J., LEHTINEN, J.,
AND AILA, T. 2007. Incremental instant radiosity for real-time
indirect illumination. In Proceedings of Eurographics Sympo-
sium on Rendering, xx–yy.

LAUR, D., AND HANRAHAN, P. 1991. Hierarchical splatting: a
progressive refinement algorithm for volume rendering. In Pro-
ceedings of SIGGRAPH, 285–288.

MALMER, M., MALMER, F., ASSARSSON, U., AND

HOLZSCHUCH, N. 2007. Fast precomputed ambient oc-
clusion for proximity shadows. Journal of Graphics Tools 12, 2,
59–71.

REN, Z., WANG, R., SNYDER, J., ZHOU, K., LIU, X., SUN, B.,
SLOAN, P.-P., BAO, H., PENG, Q., AND GUO, B. 2006. Real-
time soft shadows in dynamic scenes using spherical harmonic
exponentiation. ACM Transactions on Graphics 25, 3, 977–986.

RITSCHEL, T., GROSCH, T., KAUTZ, J., AND MUELLER, S.
2007. Interactive illumination with coherent shadow maps. In
Proceedings of the Eurographics Symposium on Rendering.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. Qsplat: A multires-
olution point rendering system of large meshes. In Proceedings
of SIGGRAPH, 343–352.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3-d shapes. In Proceedings of SIGGRAPH, 197–206.

SAMET, H. 1990. The design and analysis of spatial data structures.
Addison-Wesley.

SHAH, M., KONTTINEN, J., AND PATTANAIK, S. 2007. Caus-
tics mapping: An image-space technique for real-time caustics.
IEEE Transactions on Visualization and Computer Graphics 13,
2, 272–280.

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated
ambient occlusion techniques on gpus. In Proceedings of the
Symposium on Interactive 3D Graphics and Games, 73–80.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Transactions on Graph-
ics 21, 3, 527–536.

SLOAN, P.-P., GOVINDARAJU, N., NOWROUZEZAHRAI, D., AND
SNYDER, J. 2007. Image-based proxy accumulation for real-
time soft global illumination. In Proceedings of Pacific Graph-
ics, 97–105.

TABELLION, E., AND LAMORLETTE, A. 2004. An approximate
global illumination system for computer generated films. ACM
Transactions on Graphics 23, 3, 469–476.

TEVS, A., IHRKE, I., AND SEIDEL, H.-P. 2008. Maximum
mipmaps for fast, accurate, and scalable dynamic height field
rendering. In Proceedings of the Symposium on Interactive 3D
graphics and games, 183–190.

TOLE, P., PELLACINI, F., WALTER, B., AND GREENBERG, D.
2002. Interactive global illumination in dynamic scenes. In Pro-
ceedings of SIGGRAPH, 537–546.

WYMAN, C., AND DACHSBACHER, C. 2008. Reducing noise in
image-space caustics with variable-sized splatting. Journal of
Graphics Tools 13, 1, 1–17.

WYMAN, C. 2008. Hierarchical caustic maps. In Proceedings
of the Symposium on Interactive 3D Graphics and Games, 163–
171.

ZHOU, K., HU, Y., LIN, S., GUO, B., AND SHUM, H.-Y. 2005.
Precomputed shadow fields for dynamic scenes. ACM Trans.
Graph. 24, 3, 1196–1201.

ZHUKOV, S., IONES, A., AND KRONIN, G. 1998. An ambient
light illumination model. In Proceedings of the Eurographics
Rendering Workshop, 44–45.

